Panasonic ideas for life

RoHS compliant

FEATURES

1. Compact with high sensitivity

The high-efficiency polarized electromagnetic circuits of the 4-gap balanced armature and our exclusive spring alignment method achieves, with high-sensitivity in a small package, a relay that can be directly controlled by a driver chip.

2a2b/3a1b/4a 4A polarized power relays S RELAYS

2. Strong resistance to vibration and

 shockUse of 4G-BA technology realizes strong resistance to vibration and shock.
3. High reliability and long life Our application of 4G-BA technology, along with almost perfectly complete twin contact, ensures minimal contact bounce and high reliability.
4. Ability to provide wide-ranging control
Use of 4G-BA technology with goldclad silver alloy contacts in a twin contact structure enables control across a broad range from microcurrents of $100 \mu \mathrm{~A} 100 \mathrm{mV}$ DC to 4 A 250 V AC.
5. Latching types available With 4G-BA technology, as well as single side stable types, convenient 2 coil latching types for circuit memory applications are also available.
6. Wide variety of contact formations available
The compact size of the 4G-BA mechanism enables the provision of many kinds of package, including $2 \mathrm{a} 2 \mathrm{~b}, 3 \mathrm{a} 1 \mathrm{~b}$, and 4 a . These meet your needs across a broad range of applications.

7. Low thermal electromotive force

 relayHigh sensitivity (low power consumption) is realized by 4G-BA technology. Separation of the coil and spring sections has resulted in a relay with extremely low levels of thermal electromotive force (approx. $0.3 \mu \mathrm{~V}$).
8. DIL terminal array Deployed to fit a 2.54 mm .100 inch grid, the terminals are presented in DIL arrays which match the printed circuit board terminal patterns commonly in international use.
9. Relays that push the boundaries of relay efficiency
High-density S relays take you close to the limits of relay efficiency.
10. Sockets are available.

TYPICAL APPLICATIONS

Telecommunications equipment, data processing equipment, facsimiles, alarm equipment, measuring equipment.

4-GAP BALANCED ARMATURE MECHANISM

1. Armature mechanism has excellent resistance to vibration and shock

 The armature structure enables free rotation around the armature center of gravity. Because the mass is maintained in balance at the fulcrum of the axis of rotation, large rotational forces do not occur even if acceleration is applied along any vector. The mechanism has proven to have excellent resistance to vibration and shock. All our S relays are based on this balanced armature mechanism, which is able to further provide many other characteristics.
2. High sensitivity and reliability provided by 4-gap balanced armature mechanism

As a (polarized) balanced armature, the S relay armature itself has two permanent magnets. Presenting four interfaces, the armature has a 4-gap structure. As a result, the rotational axis at either end of the armature is symmetrical and, in an energized into a polarized state, the twin magnetic armature interfaces are subject to repulsion on one side and attraction on the other. This mechanism, exclusive to

Panasonic Corporation, provides a highly efficient polarized magnetic circuit structure that is both highly sensitive and has a small form factor. Moreover, suitability for provision with many types of contact array and other advantages promise to make it possible to provide many of the various characteristics that are coming to be demanded of relays.

HOW IT WORKS (single side stable type)

> 1) When current is passed through the coil, the yoke becomes magnetic and polarized.
> 2) At either pole of the armature, repulsion on one side and attraction on the other side is caused by the interaction of the poles and the permanent magnets of the armature.
3) At this time, opening and closing operates owing to the action of the simultaneously moulded balanced armature mechanism, so that when the force of the contact breaker spring closes the contact on one side, on the other side, the balanced armature opens the contact (2a2b).

ORDERING INFORMATION

Contact arrangement
2: 2 Form A 2 Form B
3: 3 Form A 1 Form B
4: 4 Form A
Operating function
Nil: Single side stable
L: 1 coil latching*
L2: 2 coil latching
Nominal coil voltage (DC)
$3,5,6,12,24,48 \mathrm{~V}$
Notes: 1. *1 coil latching type are manufactured by lot upon receipt of order. 2. Certified by UL and CSA

TYPES

Contact arrangement	Nominal coil voltage	Single side stable	2 coil latching
		Part No.	Part No.
2 Form A 2 Form B	3V DC	S2EB-3V	S2EB-L2-3V
	5V DC	S2EB-5V	S2EB-L2-5V
	6V DC	S2EB-6V	S2EB-L2-6V
	12 V D	S2EB-12V	S2EB-L2-12V
	24V DC	S2EB-24V	S2EB-L2-24V
	48 V DC	S2EB-48V	S2EB-L2-48V
3 Form A 1 Form B	3V DC	S3EB-3V	S3EB-L2-3V
	5V DC	S3EB-5V	S3EB-L2-5V
	6 V DC	S3EB-6V	S3EB-L2-6V
	12V DC	S3EB-12V	S3EB-L2-12V
	24V DC	S3EB-24V	S3EB-L2-24V
	48 V DC	S3EB-48V	S3EB-L2-48V
4 Form A	3V DC	S4EB-3V	S4EB-L2-3V
	5V DC	S4EB-5V	S4EB-L2-5V
	6V DC	S4EB-6V	S4EB-L2-6V
	12 V DC	S4EB-12V	S4EB-L2-12V
	24V DC	S4EB-24V	S4EB-L2-24V
	48 V DC	S4EB-48V	S4EB-L2-48V

Standard packing: Carton: 50 pcs.; Case: 500 pcs.

* For sockets, see page 55.

RATING

1. Coil data

1) Single side stable

Type	Nominal coil voltage	$\begin{gathered} \text { Pick-up } \\ \text { voltage } \\ \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{gathered}$	$\begin{gathered} \text { Drop-out } \\ \text { voltage } \\ \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{gathered}$	Nominal operating current $[\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{aligned} & \text { Coil resistance } \\ & {[\pm 10 \%]} \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Nominal operating power	Coil inductance	$\begin{gathered} \text { Max. applied } \\ \text { voltage } \\ \text { (at } 40^{\circ} \mathrm{C} 104^{\circ} \mathrm{F} \text {) } \\ \hline \end{gathered}$
Standard	3V DC	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	10% V or more of nominal voltage (Initial)	66.7 mA	45Ω	200mW	Approx. 23mH	5.5V DC
	5V DC			38.5 mA	130Ω	192mW	Approx. 65 mH	9.0V DC
	6V DC			33.3 mA	180Ω	200 mW	Approx. 93mH	11.0 V DC
	12 V DC			16.7 mA	720Ω	200 mW	Approx. 370 mH	22.0 V DC
	24V DC			8.4 mA	2,850 ${ }^{\text {a }}$	202 mW	Approx. 1,427mH	44.0 V DC
	48V DC			5.6 mA	8,500 ${ }^{\text {a }}$	271 mW	Approx. $3,410 \mathrm{mH}$	75.0V DC

2) 2 coil latching

Type	Nominal coil voltage	Set voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		$\begin{aligned} & \text { Coil resistance } \\ & {[\pm 10 \%]} \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$		Nominal operating power (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Coil inductance		$\begin{aligned} & \text { Max. applied } \\ & \text { voltage } \\ & \text { (at } 40^{\circ} \mathrm{C} 104^{\circ} \mathrm{F} \text {) } \end{aligned}$
				Set coil	Reset coil							
Standard	3V DC	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	66.7 mA	66.7 mA	45Ω	45Ω	200mW	200mW	Approx. 10 mH	Approx. 10 mH	5.5V DC
	5V DC			38.5 mA	38.5 mA	130Ω	130Ω	192mW	192mW	Approx. 31 mH	Approx. 31 mH	9.0V DC
	6V DC			33.7 mA	33.7 mA	180Ω	180Ω	200 mW	200 mW	Approx. 40 mH	Approx. 40 mH	11.0 V DC
	12V DC			16.7 mA	16.7 mA	720Ω	720Ω	200 mW	200 mW	Approx. 170 mH	Approx. 170 mH	22.0 V DC
	24V DC			8.4 mA	8.4 mA	2,850 2	2,850 Ω	202mW	202mW	Approx. 680 mH	Approx. 680mH	44.0 V DC
	48V DC			7.4mA	7.4mA	6,500 Ω	6,500 Ω	355mW	355mW	Approx. $1,250 \mathrm{mH}$	Approx. $1,250 \mathrm{mH}$	65.0V DC

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		2 Form A 2 Form B, 3 Form A 1 Form B, 4 Form A
	Contact resistance (Initial)		Max. $50 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Electrostatic capacitance (initial)		Approx. 3pF
	Contact material		Au clad Ag alloy (Cd free)
	Thermal electromotive force (at nominal coil voltage) (initial)		Approx. $3 \mu \mathrm{~V}$
Rating	Nominal switching capacity (resistive load)		4 A 250 V AC, 3 A 30 V DC
	Max. switching power (resistive load)		1,000 VA, 90 W
	Max. switching voltage		$250 \mathrm{~V} \mathrm{AC}$,48 V DC (30 to 48 V DC at less than 0.5 A)
	Max. switching current		4 A (AC), 3 A (DC)
	Minimum operating power		100 mW (Single side stable, 2 coil latching)
	Nominal operating power		200 mW (Single side stable, 2 coil latching)
	Min. switching capacity (Reference value)*		$100 \mu \mathrm{~A} 100 \mathrm{~m}$ V DC
Electrical characteristics	Insulation resistance (Initial)		Min. $10,000 \mathrm{M} \Omega$ (at 500 V DC) Measurement at same location as "Breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	750 Vrms for 1 min . (Detection current: 10 mA .)
		Between contact sets	$1,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA .)
		Between contact and coil	$1,500 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA .)
	Temperature rise (coil) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $35^{\circ} \mathrm{C}$ (By resistive method, nominal coil voltage applied to the coil; contact carrying current: 4A.)
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 15 ms [15 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.)
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $10 \mathrm{~ms}[15 \mathrm{~ms}]$ (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)
Mechanical characteristics	Shock resistance	Functional	Min. $490 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3 mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 4 mm
Expected life	Mechanical		Min. 10^{8} (at 50 cps)
	Electrical		Min. 10^{5} (4 A 250 V AC), Min. 2×10^{5} (3 A 30 V DC) (at 20 times/min.)
Conditions	Conditions for operation, transport and storage*2		Ambient temperature: $-55^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}-67^{\circ} \mathrm{F}$ to $+149^{\circ} \mathrm{F}$ Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed		20 times/min. for maximum load, 50 cps for low-level load (1 mA 1 V DC)
Unit weight			Approx. 8 g .28 oz

Notes: *1. This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2. The upper limit of the ambient temperature is the maximum temperature that can satisfy the coil temperature rise value. Refer to Usage, transport and storage conditions in NOTES.

REFERENCE DATA

1. Maximum switching power

4.-(1) Coil temperature rise

Tested Sample: S4EB-24V, 4 Form A

2. Life curve

4.-(2) Coil temperature rise

Tested Sample: S4EB-24V, 4 Form A

6. Influence of adjacent mounting

\longrightarrow Inter-relay distance, mm

Note: When installing an S-relay near another, and there is no effect from an external magnetic field, be sure to leave at least 10 mm .394 inch between relays in order to achieve the performance listed in the catalog.

\longrightarrow Inter-relay distance, mm
3. Contact reliability

Condition: 1V DC, 1mA
Detection level 10Ω
Tasted Sample: S4EB-24V, 10pcs

5. Operate and release time (Single side stable type) Tested Sample: S4EB-24V, 10 pcs

7. Thermal electromotive force

8. Effect from an external magnetic field

DIMENSIONS (mm inch) The CAD data of the products with a

CAD Data

External dimensions

General tolerance: $\pm 0.3 \pm .012$
PC board pattern (Copper-side view)

Tolerance: $\pm 0.1 \pm .004$

CAD Data mark can be downloaded from: http://industrial.panasonic.com/ac/e/
Schematic (Bottom view)

	Single side stable (Deenergized position)	2 coil latching (Reset condition)
2a2b	$\bigoplus_{0}^{1}+\stackrel{2}{9} 9^{3} \stackrel{4}{9}_{12}^{4} \stackrel{5}{9}_{0}^{5} \bigcirc_{0}^{6}$	
3a1b		
4a		

SAFETY STANDARDS

UL/C-UL (Recognized)		CSA (Certified)	
Contact rating	Contact rating		
E43028	4A 250V AC, 1/20 HP 125V AC (FLA1.5A) $1 / 20 \mathrm{HP} 250 \mathrm{~V} \mathrm{AC} \mathrm{(FLA0.75A)}, \mathrm{3A} \mathrm{30V} \mathrm{DC}$	LR26550 etc.	4A 250V AC, 1/20HP 125V AC, 1/20 HP 250V AC $3 \mathrm{~A} \mathrm{30V} \mathrm{DC}$

NOTES

1. Based on regulations regarding insulation distance, there is a restriction on same-channel load connections between terminals No. 2, 3 and 4, 5, as well as between No. 8, 9 and 10, 11. See the figure below for an example.

- Between 2, 3 and 4, 5:
different channels, therefore not possible - Between 10, 11 and 8, 9 : different channels, therefore not possible No good

For Cautions for Use.

